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This paper presents a comprehensive analysis of the velocity sensed by a single laser
vibrometer beam incident in an arbitrary direction on a target that is of substantial interest
in engineering * a rotating shaft requiring three translational and three rotational
co-ordinates to describe its vibratory motion fully. Six separate &&vibration sets'', each
a combination of motion parameters, appear in the full expression for vibration velocity
sensitivity and it is shown not to be possible to resolve individual motion components within
each set by arrangement, or even manipulation, of laser beams. To place this non-contact
transducer velocity sensitivity model in its proper context, the velocity sensitivity of
a contacting transducer under identical conditions is also derived and comparison is made
between non-contacting and contacting transducer performance. Speci"c applications of the
laser vibrometer theory to radial and axial vibration measurements are set out and it is
shown how estimation of radial vibration components is only possible by post-processing.
The theory is easily extended to include measurements made with multiple beams,
underlining the model's versatility in enabling determination of the vibration component
sensitivity of a measurement with any beam orientation or combination of beam
orientations. This will prove bene"cial in devising further optical con"gurations for the
measurement of torsional, pitch and yaw vibrations.

( 2000 Academic Press
1. INTRODUCTION

The principle of Laser Doppler Vibrometry (LDV) relies on the detection of the Doppler
frequency shift in coherent light scattered from a moving target. By measuring the frequency
shift, a time-resolved measurement of the target velocity is made. The non-contact nature of
Laser Vibrometers o!ers signi"cant advantages over traditional contacting vibration
transducers and measurements on hot, light or rotating components are often cited as
important applications.

For rotors, vibration measurement is important from the earliest stages of design and
development through to condition monitoring of installed machinery. Measurement of the
vibration transmitted from the rotor into a non-rotating component is the most common
option but, for example, where the rotor is mounted into large or rigid bearings, low
vibration transmission can make this unreliable. In many cases, a non-contact vibration
transducer capable of measuring directly from any location along the rotor is desirable and
LDV o!ers this possibility. Indeed, one of the "rst reported LDV applications was for
vibration measurement directly from a rotating turbine blade [1]. Investigations of
0022-460X/00/420245#17 $35.00/0 ( 2000 Academic Press
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magnetic discs [2, 3], bladed discs [4, 5] and modal analysis on rotating discs [6] are typical
and more recent examples of measurements that can be made.

LDV measurements made on rotors, however, can be ambiguous, a!ected by vibration
components perpendicular to the component it is intended to measure. A feature of a large
part of the previous work has been the prediction of acceptable performance in the presence
of a single vibration component, neglecting the e!ects of other components present in the
more complex motions likely to be encountered in practice. When previous studies have
acknowledged cross-sensitivities, notably to radial vibration measurements [7] and
torsional vibration measurements [8], these have merely been special cases of the totally
general theory to be presented in this paper. Interestingly, investigators have already
reported designs for a three-dimensional vibrometer [9] and a 6 d.o.f. vibrometer [10].
Until now, however, there has been no analysis of the velocity sensed by a single laser beam
incident in an arbitrary direction on a target that is of substantial interest in engineering
* a rotating shaft requiring three translational and three rotational co-ordinates to
describe its vibratory motion fully. This new theory is placed in its proper context by
a similarly comprehensive description of the velocity measured under the same conditions
by a contacting transducer.

The theory will be a useful tool for the engineer, allowing the sensitivity of any
measurement to be predicted easily for any combination of target motion components. In
addition, remaining fundamental questions about the use of laser vibrometers on rotating
components will be "nally answered.

2. TOTAL VELOCITY MEASURED BY A NON-CONTACT LASER VIBROMETER

2.1. VELOCITY AT THE POINT OF INCIDENCE OF THE LASER BEAM

The case considered is that of a rotating shaft, of arbitrary shape, undergoing an arbitrary
vibration requiring three translational and three rotational co-ordinates for description.
The resulting theory, however, will be equally applicable to any non-rotating, vibrating
structure.

As shown in Figure 1, a translating reference frame xyz, which maintains its direction at
all times, has its origin O "xed to a point along the spin axis within the shaft. P is the
instantaneous point of incidence of the laser beam on the shaft and is identi"ed by the
position vector r

P
. Provided that the illuminated axial element of the shaft can be assumed

to be rigid, the velocity of P, V
P
, is the sum of the translational velocity of origin O, V

0
, and

the velocity of P relative to O as a result of rotation about an instantaneous rotation axis
passing through O at angular velocity x:

V
P
"V

O
#(x]r

P
), (1)

where V
0
"<

x
xL #<

y
yL #<

z
zL and x"hQ

x
xL #hQ

y
yL #hQ

z
zL#XzL

R
. Note how the unit vector

de"ning the rotation axis, zL
R
, di!ers from the unit vector zL which is de"ned by the

unde#ected shaft rotation axis.
In the usual con"guration, a laser vibrometer measures target velocity at the point of

incidence in the direction of the probe laser beam. The position vector r
p

can be used to
de"ne the point in space where the line of the laser beam intersects the surface of the shaft.
However, as the shaft vibrates and rotates, the position of this point, not only on the target
but also in space, will change continuously, becoming a function of time.

Figure 2 shows three ways in which the position in space of the incident point can vary
from an initial location, shown by an ] in each "gure, to a "nal location, shown by a z ;



Figure 1. De"nition of axes and of the point P on a vibrating and rotating structure.
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"rstly, due to translation of the shaft, secondly, due to variations in the shape of the shaft as
it rotates (or rolls) and "nally due to pitch and yaw of the shaft. (Note that &&shape
variation'', as used in this paper, refers to variations in shaft dimensions and not to any
dynamic shape variation.) Since the shaft can have an arbitrary shape and it would be
inconvenient to have the velocity measured described in terms of shape, this would appear
to be a di$culty in progressing this analysis.

A reliable piece of information, however, is that, no matter how the shaft moves, the point
of incidence will always lie somewhere along the line of the beam. Any point on the line of
the beam can be described as the sum of the position vector of a known point r

0
that lies on

the line of the beam, bK , and a multiple of the unit vector de"ning the direction of the beam.
At some time, t, the position of the point of incidence r

P
(t) will have changed from the initial

position due to shaft motion and/or shape, as outlined previously, and the new point of
incidence is depicted in Figure 3. The shaft has undergone the translation A(t) and the
cross-section on which the beam is now incident has also changed due to shaft motion
and/or shape. The new position of the incident point can be written as:

r
P
(t)"[r

0
!A (t)]#p(t)bK . (2)

p(t) is always unknown but it will prove to be a convenient quantity to account for changes
in the point of incidence. This new approach simpli"es the analysis required considerably
compared to previous studies.

The velocity measured by the laser vibrometer,;
m
, is the component of the velocity of the

changing incident point in the direction of the incident beam:

;
m
"bK )V

P
"bK )V

0
#bK ) (x][r

0
!A])#bK ) (x]pbK ). (3)

The second scalar triple product in equation (3) is always zero as can be seen more clearly by
a simple re-arrangement:

bK ) (x]pbK )"px ) (bK ]bK ). (4)



Figure 2. Changes in the point of incidence due to: (a) translation, (b) rotation and (c) pitch and yaw (tilt).
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This important result means that the measured velocity, ;
m
, is independent of the

unknown parameter p, the parameter used to account for changes in space of the point of
incidence due to shaft motion and shape variation. This proves, more generally than in any
previous study, that the velocity measured by a laser vibrometer incident on a vibrating
shaft is insensitive to the shape of the shaft, despite the fact that the incident beam can
change axial and radial position on the shaft in any arbitrary fashion. Such immunity to
target shape gives this measurement technique a signi"cant advantage over, for example,
proximity probe measurements. Of course the same shape immunity is found for
measurements on targets undergoing simpler motions and the analysis still holds for
scanning applications where bK is a function of time.



Figure 3. Change in position vector caused by target motion and arbitrary shape.
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2.2. VELOCITY MEASURED BY A LASER BEAM INCIDENT ON A ROTATING SHAFT

By using the general theory presented above, the velocity measured by a laser beam
incident on an axial element of shaft, of arbitrary shape, rotating about its spin axis whilst
undergoing an arbitrary vibration can be derived. This derivation is detailed in Appendix
A.1 where the substitutions A"a

x
xL #a

y
yL #a

z
zL and r

0
"x

0
xL #y

0
yL #z

0
zL are used.

Although r
0

can be any point along the line of the beam, in practice the initial illuminated
point is often chosen. The velocity measured by a laser beam, orientated according to the
angles a and b (refer to Figure 4) and incident on a rotating shaft is given by
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Derivation of equation (5) represents a signi"cant step forward in the use of non-contacting
transducers, allowing the vibration engineer to be sure of vibration component sensitivity
for any laser beam arrangement on any target, including a rotating shaft. It shows that the
measured velocity is the sum of six terms, each the product of a combination of geometric
parameters and a combination of motion parameters * the &&vibration sets''. The six
&&vibration sets'', shown in square brackets, are inseparable combinations of di!erent
motion parameters. This important result shows that, no matter how a laser beam is
aligned, only the combinations of motion parameters within the square brackets can be
measured directly.

The "rst description of the cross-sensitivity of radial vibration measurements using laser
vibrometers [11] demonstrated how the &&error terms'' in the measured velocity, principally
(hQ

z
#X)a

y
or (hQ

z
#X)a

x
in equation (5), could be of su$cient magnitude to mask the

intended measurements of the radial velocity, V or V . A particular problem in the

x y



Figure 4. Orientation of laser beam.
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measurement of synchronous radial vibrations was also highlighted. Since this "rst
description, there has been discussion about whether a particular arrangement of laser
beams or a particular variation of the arrangement, for example by scanning the laser
beams, might enable resolution of individual motion components. Equation (5) shows that
this is not possible.

The task is simpli"ed enormously on a non-rotating target (X"0) but, for a rotating
shaft undergoing an arbitrary vibration, direct measurement of pure radial, axial or bending
vibration is not possible because the measurement will always be sensitive to other motion
components. It may be possible to assume that the e!ects of additional shaft motions are
negligible, enabling direct measurement. For example, if the amplitudes of the vibration
components are known, somehow, to be similar then the intended measurement dominates
at vibration frequencies much higher than rotation frequency. In a general case, however,
reliable estimation of components requires post-processing [12]. In contrast, unambiguous
measurement of the axial element's time-resolved rotation speed appears possible, accepting
that the torsional vibration and roll motion of the shaft are indistinguishable.

2.3. ISOLATING INDIVIDUAL COMPONENTS

Throughout the remainder of the discussion, the six vibration sets in equation (5) will be
referred to by the vibration parameter in each group that might be regarded as the intended
measurement. These are, in the order that they are presented in equation (5): the x radial,
y radial, axial, pitch and yaw vibration sets and the rotation speed set which includes
torsional vibration. Equation (5) can be simpli"ed by setting z

0
"0 so that the plane of the

origin of the xyz-axes and the &&measurement plane'' are coincident, since this is just a matter
of de"nition.

Isolation of any one of the six sets requires appropriate choice of values for a, b, x
0

and
y
0
. A radial and an axial vibration measurement are shown below as examples. While the

pitch and yaw vibration sets and the rotation speed set can be eliminated from
a measurement, no values exist that can isolate these sets. Isolation of any of these sets
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requires the geometric coe$cients of the three translational vibration sets to equal zero, i.e.,
cosb cos a"cosb sin a"sinb"0, to which there is no solution. Measurements made with
a single laser beam will always be sensitive, therefore, to either radial or axial vibration or
both, while the rotational vibration sets require more than one laser beam to be isolated.

2.3.1. Radial vibration measurement

To measure the x radial vibration set requires alignment of the laser beam so that it
passes through the centre of the shaft and along the x-axis making a"b"03 and y

0
"0.

The measured velocity is then equal to:

;
m
"[<

x
#(hQ

z
#X)a

y
!(hQ

y
!Xh

x
)a

z
]. (6)

Similarly, a"903, b"03 and x
0
"0 enable the y radial vibration set to be isolated.

Equation (6) shows agreement with previous two-dimensional theory for radial vibration
measurements [7] which was validated experimentally over a range of vibration
amplitudes, frequencies and shaft rotation speeds, including speed #uctuations. This
equation, however, extends the theory to include motion of the shaft in all 6 d.o.f. In
particular, equation (6) reveals a third and previously unreported term in the measured
velocity, (hQ

y
!Xh

x
)a

z
. Attempts to resolve x and y radial motions by post-processing [12]

currently rely on the assumption that this third term is an order of magnitude smaller than
the "rst two.

Radial measurements made during experimental studies on rotating turbine blades [1, 4]
have shown satisfactory results because only single vibration components were present. In
practice, rotating structures may have motion in all 6 d.o.f. and the measurement can
therefore be ambiguous with the cross-sensitivity signi"cant enough to mask the intended
measurement. In addition to the terms in equation (6), measurements on rotating blades
generally have the laser beam o!set from the centre of the shaft (y

0
O0) so the measured

velocity will contain terms from the rotation speed set.
Experimental validation of the previously unreported terms in equation (6), hQ

y
a
;

and
Xh

x
a
;
, was carried out using the test rig shown in Figure 5 which allowed simultaneous

axial and angular vibration of a small test rotor. Selection of each term was achieved by an
orientation of the incident laser beam "rst in a vertical radial direction, then in a horizontal
radial direction. The combination of axial and angular vibrations creates sum and
di!erence frequency components in the measured velocity. In the validation, the motions
were driven at di!erent frequencies to distinguish the appropriate components, which are
small in magnitude, from other vibrations produced by the mechanism used to generate the
required motion of the rig. The driving frequencies were carefully chosen so that the sum
and di!erence components were distinct and did not coincide with harmonics of either of
the driving frequencies.

Figures 6(a) and 6(b) show the measured sum and di!erence frequency velocity
amplitudes for a variety of vibration amplitudes along with the &&theoretical'' values derived
from measurements using piezoelectric accelerometers "xed to the bearing housing of the
shaft. Measurements of angular vibration were obtained by subtracting the outputs of two
accelerometers separated by a known distance with the axial measurements made in the
usual way. Combinations of two rotation speeds (nominally 28 and 48 Hz), three axial
vibration amplitudes (nominally 50, 250 and 500 km) and three angular vibration
amplitudes (nominally 30, 150 and 300 mrad/s for hQ

y
and 1)5, 7)5 and 15 mrad for h

x
) were

used and the data sets numbered in ascending magnitude of the theoretical component for
convenience. The measured data show reasonable agreement with the theoretical data with
the di!erences attributed, at least in part, to genuine di!erences between the motion of the



Figure 5. Test rig for validation of terms combining axial and angular motions.
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point probed by the laser and the points at which accelerometers were located. It is, of
course, the very existence of these genuine di!erences that is the motivation behind the
development of techniques for measurement directly from the rotor. The relatively small
magnitude of the measured data compounded the di$culties encountered.

2.3.2. Axial vibration measurement

To measure the axial vibration set, aligning the laser beam so that it is parallel to the shaft
rotation axis (b"903), makes the measured velocity equal to

;
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This shows that an axial vibration measurement is cross-sensitive to a combination of radial
displacements, pitch and yaw. In equation (7), terms including the pitch and yaw sets of
vibration terms are dependent on the o!sets x

0
and y

0
, and this is of signi"cance, for

example, in studies such as those of references [2, 3, 5] where the measurement point is
o!set from the shaft rotation axis. The sensitivity to these terms can be eliminated if it is
acceptable to align the laser beam so that it is collinear with the shaft rotation axis, in which
case x

0
"y

0
"0. In studies such as reference [6] where the laser beam is scanned, a, b,

x
0

and y
0

are all functions of time. Even if the variation in a and b can be considered small,
changes in x

0
and y

0
may still be signi"cant. From an alternative perspective, the incident

point on the scanning mirror can be taken as the reference point in which case x
0
and y

0
can

be constant (possibly zero) but z
0

is no longer zero.

2.3.3. Rotational vibration measurement

While it is not possible to measure any of the three rotational vibration sets in equation
(5) with a single laser beam, the Laser Torsional Vibrometer, a dual-beam instrument, has



Figure 6. Experimental validation of error terms in radial vibration measurements. (a) Xh
x
a
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been used successfully to measure the rotation speed set [13] and two such instruments
have been used for initial assessment of pitch and yaw vibration [8]. Using equation (5) as
the building block, the velocity measured by a combination of any number of beams can be
formulated and this will be the subject of a further publication.

3. TOTAL VELOCITY MEASURED AT A FIXED POINT BY A CONTACTING
TRANSDUCER

To place the description of the velocity sensed by a laser vibrometer in its proper context,
it is useful to compare equation (5) with its equivalent for a contacting transducer. For the
purposes of comparison, the &&contacting transducer'' is &&attached'' to non-rotating and then
rotating structures. Of course, the latter arrangement is fraught with practical di$culties
but a comparison of the velocities sensed is useful in underlining the di$culty in making
vibration measurements directly from rotors. The velocity measured by a contacting
transducer "xed to a point on a vibrating structure can be derived in a similar way to the
expression for the velocity sensed by a laser beam.

For the laser vibrometer, a combination of equations (1) and (2) gives the velocity of the
measurement point P as:

V
P
"V

0
#(x]r

0
)!(x]A)#(x]pbK ). (8)

The derivation of the velocity measured by a contacting transducer di!ers in that, unlike
the incident point of the laser beam, the position of its measurement point Q remains "xed
on the structure. However, as the structure tilts, the position of the measurement point
deviates from its initial position in space by a small amount so that:

V
Q
"V

0
#(x][r@

0
#(h]r@

0
)])"V

0
#(x]r@

0
)#x](h]r@

0
), (9)

where h is the angular vibration displacement of the shaft element due to pitch, yaw and roll.
r@
0

is comparable with r
0

but di!ers from r
0

in that it is a function of time and is used to
account for the gross changes of the measurement point in space due to rotation of the shaft.
This will be developed further in Appendix A.2.

It is interesting to compare equations (8) and (9) which show two common terms,
&&V

o
#(x]r

0
),'' and additional terms which account for the change in the measurement

point as the structure vibrates and rotates.
In equation (8), the "rst of the additional terms, (x]A), accounts for the e!ect of the

change in the point of incidence of the laser beam on the target due to translation of the
structure. The second term, (x]pbK ), accounts for the changes in space of the point of
incidence due to target motion and/or shape but this component is not present in the
measured velocity because it is always perpendicular to the incident laser beam. The
additional term in equation (9), x](h]r@

0
), accounts for the e!ect of changes in the

measurement point as the structure tilts.
In addition to these di!erences, a further e!ect in the measured velocity results from

changes in the sensitivity vector for the contacting transducer. While the non-contacting
transducer measures (bK )V

P
), where bK is usually a constant, the contacting transducer

measures (eL )V
Q
), where

eL"eL
0
#(h]eL

0
). (10)
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This accounts for the small deviation of the sensitivity vector from its unde#ected direction,
eL
0
, as the structure tilts.
Appendix A.2 details the derivation of the velocity measured by a contacting transducer
"xed to point Q on a structure undergoing an arbitrary vibration, including rotation about
its spin axis. In what follows, a comparison is made between the velocity measured by
a contacting transducer and the velocity measured by a laser vibrometer.

4. COMPARISON OF NON-CONTACTING AND CONTACTING TRANSDUCER
OUTPUTS

4.1. NON-ROTATING STRUCTURES

Figure 7 shows a typical measurement situation. The y vibration velocity of a cantilever
beam is to be measured at some position along its length. The axial locations of the
measurement point and the co-ordinate axes are chosen to coincide, with the axis of the
cantilever beam de"ning the direction of the z-axis.

For a contacting transducer with its base "xed to point Q and its sensitivity axis
orientated initially in the positive y direction, from equations (A.7) and (A.10) with X"0,
the velocity measured is
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To make the same intended measurement with a laser vibrometer requires the beam to be
incident on a point P, where the points P and Q are initially coincident, and aligned parallel
to the y-axis making a"903, b"03, z

0
"0. From equation (5) the measured velocity is
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. (11b)
Figure 7. Vibration measurement on a cantilever beam.
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Equations (11a) and (11b) show that, upon neglecting the higher order terms, the two
measurements are both equal to (<

y
#hQ

z
x
0
), which is readily accepted as the y velocity of

the measurement point. The additional terms in equation (11a) are due to the change in
direction of the transducer sensitivity axis as the structure tilts (those enclosed in square
brackets) and to the change in position of the measurement point in space as the structure
tilts. The additional terms in equation (11b) are due to the measurement point changing
position on the target, while remaining essentially "xed in space because changes due to
target shape are unimportant.

4.2. ROTATING STRUCTURES

On a rotating structure the time dependence of eL
0

would make for a very complicated
description of the measured velocity, but one that can be given by expansion of equation
(A.6) using equations (A.7a&b), modi"ed as described in Appendix A.2, and equation (A.10).
If it could be achieved, an interesting contacting transducer measurement would be one in
which the sensitivity direction remains "xed despite the target motion. It is interesting to
compare the output of this &&ideal'' contacting transducer with the "xed direction laser
vibrometer measurement.

For a measurement of radial vibration in the y direction the velocity measured by the
&&ideal'' contacting transducer is the velocity component in the y direction. Using equation
(A.10) and letting the axial location of the transducer de"ne the location of the co-ordinate
axes one has
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where F (t)"x
0
cosXt!y

0
sin Xt and G (t)"x

0
sinXt#y

0
cosXt. Making the same

intended measurement using a laser vibrometer, equation (5) would give:
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Unlike equations (11a) and (11b), after neglecting the higher order terms, equations (12a)
and (12b) di!er in their cross-sensitivities to rotation speed and roll. The terms enclosed in
the square brackets in both equations account for the change in position of the
measurement point. The di!erences between these sets of terms occur because the positions
of the measurement points change in di!erent ways. For the contacting transducer,
displacement of the structure causes the measurement position to change position in space
but remain in the same position relative to a rotating reference frame attached to the
structure. In contrast, for the laser vibrometer, displacement of the structure causes the
measurement point to change position on the target but it remains somewhere along a "xed
line in space. However, this change in position along the line of the laser beam has no e!ect
on the measured velocity as equation (4) shows. Thus, for the laser vibrometer, the extra
terms are principally due to the change in position of the measurement point relative to
a reference frame attached to the structure but not changing position in space.

The cross-sensitivity of the measurements can be compared for both transducers by
studying the dominant &&error velocity'' term, XF (t) for the contacting transducer or Xa

x
for

the laser vibrometer. Upon considering a harmonic vibration at frequency u
v

for the
purposes of comparison, these terms can be written as

XF (t)"XJx2
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cos(Xt#/), Xa
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cos(u

v
t#/@), (13a, b)
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where / and /@ are phase terms and A
x
is the amplitude of the vibration displacement in the

x direction, i.e., perpendicular to that of the intended measurement.

As Jx2
0
#y2

0
, which for a cylindrical shaft is equal to the shaft radius, is generally much

larger than displacement amplitudes, the cross-sensitivity is much greater even for this
&&ideal'' contacting transducer. However, as x

0
, y

0
, / and X are known or can be measured,

the potential to subtract this component from the contacting transducer's measured
velocity does exist while this is not possible for the laser vibrometer as A

x
and /@ are

unknown* indeed, they are part of the required measurement. Unfortunately, because it is
likely that XF(t)A<

y
, this subtraction would be very prone to error.

The cross-sensitivity in the laser vibrometer measurements, which can mask the intended
measurement entirely, can be overcome for all but synchronous vibrations by post-
processing [12]. The cross-sensitivity problems in the laser vibrometer measurement are
dependent on the vibration displacement frequencies whereas the cross-sensitivity in the
contacting transducer measurement would principally only occur at synchronous
frequencies. However, any torsional vibrations or speed #uctuations would cause time
dependence in X and introduce cross-sensitivity into the contacting transducer
measurements at additional frequencies.

These comparisons emphasize the di$culties encountered in attempting to measure
vibrations directly from a rotating target not just for non-contacting transducers, as
documented previously, but also for contacting transducers. The potential of laser
vibrometry for such challenging applications is not so much diminished by the issues raised
in this paper as it is emphasized by the problems that would be encountered even if
a suitable contacting transducer could be devised.

5. CONCLUSIONS

In this paper, a comprehensive theory has been presented to describe the velocity sensed
by a single laser beam incident on a rotating structure requiring three translational and
three rotational co-ordinates to describe its vibratory motion fully. The theory is equally
applicable to measurements on targets with simpler motions, such as non-rotating targets,
allowing the vibration engineer to determine the vibration component sensitivity of any
measurement with any laser beam orientation.

Arbitrary motion of any arbitrarily shaped component can cause the point of incidence of
the laser beam on the target surface to change. This feature of such measurements has been
incorporated into the new theory and insensitivity to target shape proved in the most
general fashion.

Six separate vibration sets, each a combination of motion parameters, appear in the full
expression for vibration velocity sensitivity. The x radial, y radial, and axial sets can be
isolated by appropriate geometric set-up of the laser beam while the pitch and yaw
vibration sets and the rotation speed set cannot be isolated with a single laser beam.
Resolution of individual motion components within each set has been shown not to be
possible by any geometric arrangement of the laser beam or by introduction of additional
laser beams.

Many previous analyses have predicted satisfactory and straightforward application
because only single vibration components have been considered. For a rotating shaft
undergoing arbitrary motion, direct measurement of radial or axial vibration is not possible
because the measurement will always be sensitive to other motion components.
Approximate solutions to resolve steady state, non-synchronous, radial vibrations are
under development based on post-processing of simultaneous measurements [7, 12].
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Examples of how the new theory can be applied have been presented and have shown
agreement with the speci"c cases considered in previous work, underlining the theory's
versatility in predicting laser vibrometer sensitivity to target motion with 6 d.o.f.
The model of velocity sensitivity in a laser vibrometer measurement has been put into
context by comparison with the velocity sensitivity of a contacting transducer under
equivalent conditions. The comparison serves to emphasize the challenging nature of
measurement directly from rotating components and, even for an &&ideal'' contacting
transducer able to maintain its sensitivity axis during rotation, important cross-sensitivities
would exist.

The comprehensive nature of the model presented will enable laser vibrometer
measurements directly from rotors to be interpreted correctly and attention can now be
turned to post-processing instrument outputs to give the best-quality data possible. The
general nature of the theory means that it can be easily extended to cover measurements
made with multiple beams for rotational vibration measurements and this will be the
subject of a further publication. Extension of the theory to analysis of axially #exible
rotating discs is the subject of continuing work.
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APPENDIX A

A.1. VELOCITY MEASURED BY AN INCIDENT LASER BEAM

The origin of the translating reference frame xyz is "xed to a point on the centreline of the
shaft with the unde#ected shaft rotation axis de"ning the direction and position of the
z-axis. The con"guration is depicted in Figure 1 with the time-dependent unit vector
zL
R

de"ning the changing direction of the shaft rotation axis, which deviates from the z-axis
as the shaft tilts. The velocity measured by the laser vibrometer,;

m
, is the component of the

velocity of the point of incidence in the direction of the incident beam.
The velocity of the point of incidence P, given by equation (1), can be expanded as

V
P
"(<

x
xL #<

y
yL #<

z
zL )#hQ

x
(xL ]r

p
)#hQ

y
(yL ]r

p
)#hQ

z
(zL ]r

p
)#X(zL

R
]r

p
), (A.1)

where <
x
, <

y
and <

z
are the translational vibration velocities of the origin O in the x, y and

z directions, X is the total rotation speed of the axial shaft element (combining shaft rotation
speed and any torsional vibration of the axial element) and hQ

x
, hQ

y
and hQ

z
are the angular

vibration velocities of the shaft around the x-, y- and z-axis, referred to as pitch, yaw and roll
respectively.

The small angular deviation of zL
R

from zL can be related to the shaft pitch and yaw with
zL
R

written in terms of a constant component, zL , and a time-dependent component

zL
R
"zL#(h]zL )"zL#h

y
xL !h

x
yL , (A.2)

where h is the angular vibration displacement of the shaft element due to pitch, yaw and roll.
This eliminates the need for the time-dependent unit vector zL

R
and the velocity of the point

P can now be written only in terms of the three orthogonal vectors xL , yL and zL

V
P
"(<

x
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y
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#Xh

y
) (xL ]r
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)#(hQ
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z
#X) (zL ]r

P
). (A.3)

Upon substituting the position of the incident point, r
P
, given by equation (2), into equation

(A.3) and using equation (4), the velocity measured by a laser vibrometer incident on
a rotating shaft may be written as

;
m
"bK ) (<
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xL #<

y
yL #<

z
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x
#Xh

y
)bK ) (!(z
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z
#X)bK ) (!(y

0
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y
)xL #(x

0
!a

x
)yL ), (A.4)

where a
x
, a

y
and a

z
are the translational vibration displacements of the origin O in the x,

y and z directions and x
0
, y

0
and z

0
are the co-ordinates (measured from the unde#ected

axes as shown in Figure 3) of the known point on the line of the beam.
In order to make this equation of more direct practical use, bK needs to be described in

terms of measurable parameters. Figure 4 shows how bK can be described as a combination
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of two angles; with bK "xL initially, rotating "rst by an angle b around yL , then by an angle
a around zL . These two rotations are "nite and, therefore, this order of rotation must be
maintained. In Cartesian form bK is given by

bK "cosb cos axL #cosb sin ayL !sin bzL . (A.5)

Substituting equation (A.5) into equation (A.4) gives the full expression for the velocity
measured by a laser vibrometer, orientated according to the angles a and b and incident on
a rotating shaft, as equation (5) in the main paper.

A.2. VELOCITY MEASURED BY A CONTACTING TRANSDUCER

The velocity, U
Q
, measured at a point Q to which the transducer is "xed is the component

of the velocity of Q in the direction of the transducer's sensitivity axis, de"ned by the unit
vector eL , such that

U
Q
"eL )V

Q
. (A.6)

As the component tilts, however, the direction of the sensitivity axis deviates a small amount
from its initial direction, eL

0
, such that:
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(A.7a)

where

eL
0
"e

x
xL #e

y
yL #e

z
zL . (A.7b)

For a non-vibrating structure, rotating about its spin axis, de"ned by the unit vector zL , the
instantaneous position of a point Q on the structure, r@

0
, can be written as

r@
0
"F (t)xL #G(t)yL #z

0
zL (A.8a)

where F (t)"x
0
cosXt!y

0
sinXt and G(t)"x

0
sinXt#y

0
cosXt.

As a result of angular vibration of the structure the position vector becomes

r
Q
"r@

0
#(h]r@

0
)"F (t)xL

R
#G(t)yL

R
"z

0
zL
R
, (A.8b)

where x
0
, y

0
and z

0
de"ne the initial position of the point in the translating reference frame

xyz, X is the angular velocity of the shaft about the spin axis and xL
R
, yL

R
and zL

R
are the unit

vectors de"ning a translating and tilting, but non-rotating, reference frame "xed to the
component.

As previously described by equation (A.2), the small angular deviations of xL
R
, yL

R
and

zL
R

from their unde#ected positions, xL , yL and zL , can be related to the pitch, yaw and roll of the
component such that the instantaneous position of a point Q, r

Q
, on the component can be

written as
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(A.9)
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By inserting this expression for the position of point Q into equation (A.3), which describes
the velocity of any point on a rotating component, the velocity of the point Q, V

Q
, can be

written as
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Combination of this equation with equations (A.7a) and (A.7b), with equation (A.7b)
modi"ed to include the gross rotation of the transducer in a similar fashion to equation
(A.8a), is straightforward and will reveal the velocity measured by the contacting transducer
"xed to a rotating structure undergoing arbitrary motion. Although this is not done here for
brevity, equations (A.7) and (A.10) will prove useful in the comparison of non-contacting
and contacting transducers in section 4 of the main paper.
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